- Регистрация
- 24.06.19
- Сообщения
- 52,560
- Реакции
- 292,664
Последние темы автора:
- [Елена Силка] Техники формирования ценности и удержания статусных мужчин (2024)
- [Филип Гарднер, Энди Стэндинг] Мебель своими руками. 35 МК, которые можно сделать за выходные (2024)
- [Патрик Кинг] Смол-ток. Перестаньте говорить о погоде и начните налаживать реальные связи (2024)
- [М. Романова] Абсолютное Расслабление. Практика для тех, кто хочет отдохнуть и восстановиться (2024)
- [Галия Злачевская] [Шитье] Компьютерная программа по построению брюк на любую фигуру (2024)
- #1
Голосов: 0
Технологии анализа текстовой информации стремительно меняются под влиянием машинного обучения. Нейронные сети из теоретических научных исследований перешли в реальную жизнь, и анализ текста активно интегрируется в программные решения.
Нейронные сети способны решать самые сложные задачи обработки естественного языка, никого не удивляет машинный перевод, "беседа" с роботом в интернет-магазине, перефразирование, ответы на вопросы и поддержание диалога.
Почему же Сири, Алекса и Алиса не хотят нас понимать, Google находит не то, что мы ищем, а машинные переводчики веселят нас примерами "трудностей перевода" с китайского на албанский? Ответ кроется в мелочах - в алгоритмах, которые правильно работают в теории, но сложно реализуются на практике.
Научитесь применять методы машинного обучения для анализа текста в реальных задачах, используя возможности и библиотеки Python. От поиска модели и предварительной обработки данных вы перейдете к приемам классификации и кластеризации.
Подробнее:
Скачать:Для просмотра ссылок пройдите регистрацию