- Регистрация
- 24.06.19
- Сообщения
- 64,916
- Реакции
- 376,738
Последние темы автора:
- [Gift cookies] Николай Гагарин — Рождественские встречи (2025)
- [DogWinner] Варвара Большакова — На связи (2025)
- [Иван Парфентев] Взлом алгоритмов 3.0. Тариф Sale (2025)
- [Алексей Корзов] Korzov Sale (2025)
- [Шамим Бхуян, Тимур Исаченко] Генеративный ИИ с обучением больших языковых моделей (LLM) для джунов (2025)
- #1
Голосов: 0
[Елена Кантонистова] [Stepik] Рекуррентные сети в NLP и приложениях (2025)
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".
Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса
Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях
Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing) и в особенности Deep Learning-подходами для решения задач из области NLP.
Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект
Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Подробнее:
[Елена Кантонистова] [Stepik] Рекуррентные сети в NLP и приложениях (2025) - Описание курса
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".
Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса
Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях
Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing) и в особенности Deep Learning-подходами для решения задач из области NLP.
Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект
Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Подробнее:
Для просмотра ссылок пройдите регистрацию
Скачать курс - [Елена Кантонистова] [Stepik] Рекуррентные сети в NLP и приложениях (2025)
Вы должны Войти на форум чтобы увидеть контент.